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ABSTRACT. The Neumann-Poincaré operator is a bound-
ary-integral operator associated with harmonic layer poten-
tials. This article proves the existence of eigenvalues within
the essential spectrum for the Neumann-Poincaré operator
for certain Lipschitz curves in the plane with reflectional
symmetry, when considered in the functional space in which
it is self-adjoint. The proof combines the compactness of
the Neumann-Poincaré operator for curves of class C2,α with
the essential spectrum generated by a corner. Eigenvalues
corresponding to even (odd) eigenfunctions are proved to lie
within the essential spectrum of the odd (even) component of
the operator when a C2,α curve is perturbed by inserting a
small corner.

1. Introduction and basics of the Neumann-Poincaré opera-
tor. The Neumann-Poincaré operator KΓ and its formal adjoint K∗Γ
are boundary-integral operators associated with the double-layer har-
monic potential and the normal derivative of the single-layer harmonic
potential for the boundary Γ of a bounded domain in Rn. When Γ is of
class C2, these operators are compact, and thus their spectra consist
only of eigenvalues converging to zero (and zero itself). For domains
with Lipschitz boundary, they have essential spectrum, which depends
critically on the function spaces in which they act. This work proves the
existence of eigenvalues within the essential spectrum of K∗Γ for certain

Lipschitz curves Γ in R2 in the Sobolev distribution space H−1/2(Γ), in
which K∗Γ is self-adjoint (Theorem 8). The theorem implies eigenvalues

within the essential spectrum for KΓ in H1/2(Γ), which has exactly the
same spectrum as K∗Γ in H−1/2(Γ).
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In R2, if Γ is the boundary of a simply connected bounded domain,
the Neumann-Poincaré operator applied to a function φ : Γ→ C is

(1.1) KΓ[φ](x) = − 1

2π

∫
Γ

φ(y)
x− y
|x− y|2 ·ny ds(y),

in which x and y are on Γ, ny is the outward-directed normal vector to
Γ at y ∈ Γ, and ds(y) is the arclength measure on Γ. The adjoint of KΓ

in L2(Γ), which we called the formal adjoint K∗Γ above, is

(1.2) K∗Γ[φ](x) =
1

2π

∫
Γ

φ(y)
x− y
|x− y|2 ·nx ds(y).

These operators are defined as legitimate integrals when Γ and φ are
smooth enough, and they are extended to different normed distributional
spaces by continuity.

The eigenvalues of K∗Γ in L2(Γ) are real. This is because K∗Γ is
symmetric with respect to the inner product associated with a weaker
norm defined through the boundary-integral operator SΓ for the single-
layer potential,

(1.3) SΓ[φ](x) = − 1

2π

∫
Γ

log(β|x− y|)φ(y) ds(y).

For appropriately chosen β > 0, this operator on L2(Γ) is strictly
positive [12, Lemma 2.1] and not surjective since it is bounded
and invertible from H−1/2(Γ) to H1/2(Γ) [6, 15]. The Plemelj
symmetrization principle

(1.4) KΓSΓ = SΓK∗Γ
in L2(Γ) implies the symmetry of K∗Γ with respect to the inner product
〈f, g〉SΓ := (SΓf, g)L2(Γ),

(1.5) 〈K∗Γf, g〉SΓ = 〈f,K∗Γg〉SΓ .

Perfekt and Putinar [15] show that this theory persists even for Lipschitz
curves Γ. By completing the vector space L2(Γ) with respect to the S
norm

(1.6) ‖f‖2SΓ
= 〈SΓf, f〉L2(Γ),

K∗Γ is extended by continuity to a self-adjoint operator. This completion

space coincides with the Sobolev space H−1/2(Γ) of distributions [15,
Lemma 3.2], which is sometimes referred to as the “energy space” for K∗Γ.
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In this article, H−1/2(Γ) will always refer to the Hilbert space with the
S inner product 〈f, g〉SΓ .

The operator norm of K∗Γ, as a self-adjoint operator in H−1/2(Γ), is
equal to 1/2, and the spectrum is contained in the half-open interval
(−1/2, 1/2], with 1/2 being an eigenvalue. The eigenspace is spanned
by the density for a single-layer potential that is constant in the interior
domain of Γ [11].

The analogous space in which KΓ is self-adjoint is H1/2(Γ)⊂L2(Γ)
with respect to the norm (S−1

Γ f, g)L2(Γ). Therefore, any eigenfunction

of KΓ corresponding to a non-real eigenvalue λ cannot lie in H1/2(Γ).
When Γ is a curvilinear polygon, KΓ does admit non-real eigenvalues
with eigenfunctions in L2(Γ). Mitrea [14] proved that these eigenvalues
fill the interior domains of bowtie-shaped curves in the complex plane
that are symmetric about the real line, one for each corner. The curves
themselves consist of essential spectrum. The operator K∗Γ, on the

other hand, being self-adjoint in H−1/2(Γ) with respect to the inner
product 〈f, g〉SΓ

, cannot have non-real eigenvalues with eigenfunctions
in L2(Γ)⊂H−1/2(Γ). This means that, for a non-real eigenvalue λ of KΓ,
the operator K∗Γ− λ̄I acting on L2(Γ) is injective and has range that
is not dense in L2(Γ); such λ̄ is in the residual spectrum of K∗Γ as an
operator on L2(Γ). Helsing and Perfekt [9] proved that, for a domain in
R3 with a single conical point and continuous rotational symmetry, this
spectrum consists of an infinite union of conjugate-symmetric domains
in the complex plane corresponding to the Fourier components.

In H−1/2(Γ), where K∗Γ is self-adjoint, the essential spectrum of K∗Γ
for a curvilinear polygon consists of an interval in the real line that is
symmetric about 0 [2, 15, 16]. Each corner of Γ contributes an interval
[−b, b] to the essential spectrum, and b varies monotonically between
0 and 1/2 as the corner becomes sharper, as described in Section 3.
When the corner is outward-pointing and Γ has reflectional symmetry
about a line L with the tip of the corner on L, the interval [−b, 0] is
the essential spectrum for the odd component of K∗Γ and [0, b] is the
essential spectrum for the even component [10]. When the corner is
inward-pointing, this correspondence is switched. This separation of
even and odd essential spectrum is critical in our proof of eigenvalues
within the essential spectrum.

In his 1916 dissertation [2], Torsten Carleman considered eigenfunc-
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tions of the operator K∗Γ that are orthonormal with respect to the S
inner product (p. 157–178 and equation (194)), as well as generalized
eigenfunctions for a curve with corners. At the end of the work (p. 193),
he writes a spectral representation for K∗Γg in terms of a sum over eigen-
functions plus an integral over generalized eigenfunctions, for functions
g that have finite S norm. The validity of this analysis for K∗Γ in the

space H−1/2(Γ) would establish the absolute continuity of the essential
spectrum associated with the generalized eigenfunctions, which causes
the eigenvalues of our Theorem 8 to be embedded in the continuous
spectrum. It is strongly believed, if not generally accepted, that the
essential spectrum and the absolutely continuous spectrum coincide.

There is numerical evidence of embedded eigenvalues for the
Neumann-Poincaré operator. Helsing, Kang, and Lim [8] numerically
implement a rate-of-resonance criterion and illustrate two eigenvalues
within the continuum for an ellipse with an attached corner. We will
revisit this example in discussion point (5) of Section 5. For a rotation-
ally symmetric domain in R3 with a conical point mentioned above [9,
§7.3.3, Figure 8], eigenvalues for certain Fourier components of the
Neumann-Poincaré operator are computed, and these lie within the
essential spectrum of other Fourier components.

Our strategy for proving eigenvalues in the essential spectrum goes
as follows. Start with a curve Γ0 that is of class C2,α and that is
reflectionally symmetric about a line L. Let λ be an eigenvalue of K∗Γ0

that is, say, positive with eigenfunction that is, say, odd with respect
to L. Then construct a symmetric perturbation Γ of Γ0 such that (1)
K∗Γ has a positive eigenvalue near λ with odd eigenfunction and (2)
the even component of K∗Γ has essential spectrum that overlaps this
eigenvalue. To accomplish the second requirement, Γ is constructed by
replacing a small segment of Γ0 with a corner that connects smoothly to
the rest of Γ0, with the tip of the corner lying on L and whose angle is
such that λ ∈ (0, b). To accomplish the first requirement, the replaced
segment needs to be sufficiently small. The analysis of requirement
(1) is remarkably subtle, and our proof relies on the deep fact that
all eigenfunctions of K∗Γ0

as an operator in H−1/2(Γ0) are actually in

L2(Γ0).

Perturbative spectral analysis of K∗Γ in H−1/2(Γ) relies on the self-
adjointness of the operators K∗Γ in the S inner product. But the positive-
definiteness of this inner product requires an appropriate choice of the
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constant β in (1.3), and this depends on the domain Γ. As Γ varies
over a family of Lipschitz perturbations of a smooth curve, it must
be guaranteed that S remain positive for all perturbations. Instead
of controlling the number β, this inconvenience can be dealt with by

restricting to the K∗Γ-invariant subspace H
−1/2
0 (Γ), on which 〈 · , · 〉S

remains positive. The space H
−1/2
0 (Γ) consists of all distributions

ψ ∈ H−1/2(Γ) such that 〈ψ, 1〉 = 0 in the H−1/2-H1/2 pairing. The

S-orthogonal complement of H
−1/2
0 (Γ) in H−1/2(Γ) is spanned by the

eigenfunction of K∗Γ corresponding to eigenvalue 1/2 span H−1/2(Γ).
Some interesting aspects of the definiteness of the single-layer potential
in two dimensions are investigated in [19].

2. Approximate eigenfunction on a perturbed curve. This
section accomplishes the first step, which is to construct an approximate
eigenfunction φ̃ of K∗Γ for a Lipschitz perturbation Γ of a C2,α curve Γ0.
The strategy is as follows. Start with a curve Γ0 of class C2,α and an
eigenfunction φ of K∗Γ0

as an operator in H−1/2(Γ0), that is, K∗Γ0
φ= λφ.

Then construct a Lipschitz perturbation Γ of Γ0 by replacing a segment
of Γ0 by a curve with a corner so that the restriction φ̃ of φ to the
rest of the curve—which is common to both Γ0 and Γ—is nearly an
eigenfunction of K∗Γ in the sense that ‖(K∗Γ−λ)φ̃‖SΓ ≤ ε ‖φ̃‖SΓ . This is
the essence of the proof of Lemma 5, which concludes that the resolvent
(K∗Γ − λ)−1 can be made as large as desired by taking a fine enough
perturbation Γ.

Our proof of Lemma 5 relies on the fact that any eigenfunction of
K∗Γ0

:H−1/2(Γ0)→H−1/2(Γ0) actually lies in L2(Γ0). This was observed
by Khavinson, Putinar, and Shapiro [12, 17], in which a theory of
M. Krein [13] on operators in the presence of two norms was brought
to bear on the Neumann-Poincaré operator. Lemma 1 is essentially
Theorem 3 of [13]. We include a proof here.

Lemma 1. Let Γ0 be a simple closed curve of class C2 in R2. If
φ ∈H−1/2(Γ0) satisfies K∗Γ0

φ = λφ for a nonzero real number λ, then

φ ∈ L2(Γ0).

Proof. Let β in the kernel of SΓ0 (1.3) be chosen such that 〈 · , · 〉SΓ0

is positive definite on H−1/2(Γ0). Let λ be a nonzero real number.
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Let N denote the nullspace of K∗Γ0
−λI in L2(Γ0), and let V denote its

complement with respect to the inner product induced by the single-layer
operator SΓ0 ,

N :=
{
f ∈ L2(Γ0) : (K∗Γ0

−λI)f = 0
}
,(2.7)

V :=
{
f ∈ L2(Γ0) : 〈f, g〉SΓ0

= 0 ∀ g ∈N
}
.(2.8)

The space V is closed in L2(Γ0), and L2(Γ0) = N + V as an algebraic
direct sum. The operator K∗Γ0

−λI is invariant on V because of the
symmetry of K∗Γ0

with respect to 〈 · , · 〉SΓ0
. Its restriction to V is injective

and K∗Γ0
restricted to V is compact in the L2(Γ0) norm because K∗Γ0

is compact in L2(Γ0) [6, 15]. This implies that K∗Γ0
−λI is surjective

on V , using the fact that the Fredholm index of K∗Γ0
−λI on V is zero.

Therefore (K∗Γ0
−λI)−1 : V → V exists as a bounded operator in the

L2(Γ0) norm with (K∗Γ0
−λI)−1(K∗Γ0

−λI) being the identity operator
on V .

The symmetry of K∗Γ0
with respect to 〈 · , · 〉SΓ0

implies that (K∗Γ0
−

λI)−1 is also symmetric with respect to this inner product. The key
step of the proof is now an application of Theorem 1 in [13]. Since
the S norm is weaker than the L2 norm, this symmetry implies that
(K∗Γ0
−λI) and (K∗Γ0

−λI)−1 are bounded when considered as operators
in V , viewed as an incomplete normed linear space with respect to
‖ · ‖SΓ0

. Since ‖ · ‖SΓ0
is equivalent to the H−1/2(Γ0) norm, K∗Γ0

−λI and

(K∗Γ0
−λI)−1 extend uniquely to the completion Ṽ of V in H−1/2(Γ0), and

the composition (K∗Γ0
−λI)−1(K∗Γ0

−λI)|V lifts to the identity operator

on Ṽ [13, Theorem 2].

SinceN is finite dimensional and L2(Γ0)=N+V , one hasH−1/2(Γ0)=

N + Ṽ . And since K∗Γ0
−λI is invertible on Ṽ and (K∗Γ0

−λI)[N ] = {0},
it follows that the nullspace of K∗Γ0

−λI in H−1/2(Γ0) is equal to N ,

(2.9)
{
f ∈H−1/2(Γ0) : (K∗Γ0

−λI)f = 0
}

= N.

This implies that every eigenfunction K∗Γ0
that is in H−1/2(Γ0) also lies

in L2(Γ0). �

If the curve Σ (which could be either Γ0 or Γ) admits reflection
symmetry about a line L, one has a decomposition

(2.10) H−1/2(Σ) =H−1/2,e(Σ)⊕H−1/2,o(Σ)
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into spaces of even and odd distributions with respect to L. This is an
orthogonal direct sum with respect to the S inner product. Since the
operator K∗Σ commutes with reflection symmetry, this decomposition

of H−1/2(Σ) induces a decomposition of K∗Σ onto the even and odd
distribution spaces, on which it is invariant,

(2.11) K∗Σ =K∗Σ,e⊕K∗Σ,o.

The Lipschitz perturbations of Γ0 and near-eigenfunctions constructed
in this section have to be controlled in a careful way. We therefore make
a precise definition of the type of perturbation we will use. It is by
no means the most general. The specific geometry of the corner is not
important but serves to simplify the proofs; indeed, the invariance of
the essential spectrum under smooth perturbations of a Lipschitz curve
that preserve the angles of the corners is proved in [15, Lemma 4.3].
The perturbed curves Γ constructed in Definition 2 have corners that
are locally identical to a corner of a prototypical simple closed Lipschitz
curve featuring a desired half exterior angle θ with 0<θ<π. This curve
is the boundary ∂Ω of a region Ω defined by two intersecting circles of
the same radius, as illustrated in Figure 2. Explicit spectral analysis
of these domains has been carried out by Kang, Lim, and Yu [10] and
will be used in the analysis in Section 3.

Definition 2. Let Γ0 be a simple closed curve of class C2,α (α > 0) in
R2. A type T perturbation of Γ0 is a curve Γ that has one corner with
half exterior angle given arbitrarily by θ : 0< θ < π and is otherwise of
class C2,α, and that is equipped with the following structure.

(a) Let x0 ∈ Γ0 be a reference point, and let Γ0 be parameterized by
the unit interval [0, 1] (using the notation Γ0(t) for t ∈ [0, 1]) with
Γ0(0) = Γ0(1) = x0.

(b) Let ∆ = {x : |x−x0| ≤ δ} be a disk that intersects Γ0 in a connected
segment B of Γ0 about x0, that is, such that for some numbers t1 and
s1 with 0< t1 < s1 < 1,

(2.12) B := ∆∩Γ0 = {Γ0(t) : t ∈ [0, t1]∪ [s1, 1] } .
Denote the complementary connected component of Γ0 by A=Γ0[(t1, s1)],
so that

(2.13) Γ0 = A ∪̊B.
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Figure 1. A type T perturbation of a curve Γ0 of class C2,α, as
described in Definition 2, with reflectional symmetry about the line
L. The segment B of Γ0 that is contained in the disk ∆ is replaced by
a curve with a corner to obtain Γ. In the upper case where the half
exterior angle satisfies π/2< θ < π, the corner is pointing outward; and
in the lower case where 0< θ < π/2, the corner is pointing inward. The
curve Γ0 is parameterized by the interval [0, 1] with Γ0(0) = Γ0(1) = x0

and 0< t1 < t2 < s2 < s1 < 1.
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Figure 2. The boundary ∂Ω of a bounded domain Ω defined by two
intersecting circles of the same radius is the prototype of a curvilinear
polygon. On the left, the outward-pointing corner has half exterior
angle θ : π/2< θ < π; and on the right, the inward-pointing corner has
half exterior angle θ : 0< θ < π/2.

(c) Let numbers t2 and s2 in [0, 1] such that 0< t1 < t2 < s2 < s1 < 1 be
given, so that Γ0(t2) and Γ0(s2) lie in A. Let A′ denote the subsegment
of A equal to Γ0[(t2, s2)].
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(d) A type T perturbation Γ of Γ0 is obtained by replacing B by a simple
Lipschitz perturbation curve D which connects in a C2 manner to the
boundary points Γ0(t1) and Γ0(s1) of A and which is otherwise contained
in the interior of ∆. D is C2,α except at one interior point x′0 of D. An
open subset of D containing x′0 coincides with a translation-rotation of
the intersection of a disk ∆′ of radius δ′ < δ with a corner of a curve
∂Ω obtained from two intersecting circles of the same radius, oriented
such that the exterior angle is equal to 2θ (as described in Figure 2).

Lemma 5 is the workhorse of the main theorem on eigenvalues in
the essential spectrum (Theorem 8). The type T perturbations Γ will
be required to satisfy a certain Lipschitz condition that will ensure,
according to Lemma 4, that SΓ is uniformly controlled in the L2(Γ)
norm. For the construction of such perturbations in Lemma 6, the
Lipschitz constant M will depend on the angle θ of the corner.

Condition 3 (Lipschitz condition). Let Γ0 be a simple closed curve of
class C2 in R2. Let a triple (U,∆0,M) for Γ0 be given, in which ∆0 is
a closed disk contained in an open subset U of R2, such that ∆0 ∩Γ0

is a simple curve of nonzero length, M is a positive real number, and
U ∩Γ0 is the graph of a function in some rotated coordinate system for
R2 with Lipschitz constant less than M . A perturbation curve Γ of Γ0

satisfies the Lipschitz condition subject to the triple (U,∆0,M), if the
perturbation is confined to ∆0, that is, Γ0 \∆0 = Γ \∆0, and U∩Γ is
the graph of a function in some rotated coordinate system for R2 with
Lipschitz constant less than M .

Lemma 4. Let Γ0 be a simple closed curve of class C2 in R2, and let
(U,∆0,M) be a triple for Γ0 as described in Condition 3. There exists
a constant CS > 0 such that, for each perturbation Γ of Γ0 that satisfies
the Lipschitz Condition 3 subject to the triple (U,∆0,M),

(2.14)
∣∣(SΓψ,ψ)L2(Γ)

∣∣ ≤ C2
S (ψ,ψ)L2(Γ) ∀ψ ∈ L2(Γ).

Proof. In (1.3), we assume β = 1; the proof is similar for general
β > 0. It will first be proved that there exists a constant C such that
for every curve Γ satisfying the conditions of Lemma 4,

(2.15) sup
x∈Γ

1

2π

∫
Γ

∣∣ log |x− y|
∣∣dσy ≤ C.
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Suppose Γ is any such curve. The constant C obtained by the following
analysis will not depend on the particular choice of Γ.

The conditions in Lemma 4 guarantee that there exists a collection
{U i}Ni=0 of open subsets of R2, independent of Γ, and rotated coordinate
systems {(ξi, ηi)}Ni=0 for R2 such that U0 = U , U i ∩ ∆0 = ∅ for
i = 1, . . . , N , {U i}Ni=0 covers Γ, and for i = 0, . . . , N , the intersection
U i∩Γ is the graph ηi = f i(ξi) of a Lipschitz function f i on an interval
(ξi1, ξ

i
2). The collection {U i}Ni=1 can be taken to be fine enough so that

all the functions f i have Lipschitz constant bounded by M .

Denote the arclength of any curve γ by len(γ). For the cover {U i}Ni=0,
there exists a number r0 : 0<r0<1, such that for every x∈Γ, there exists
an integer ix : 0≤ ix ≤N and a segment γx of Γ such that x ∈ γx ⊂ U ix
and len(γx) = 2r0, with x located at the center of γx with respect to
arclength. Inside the chart U ix , γx is parameterized by ηix = f ix(ξix)

for ξix ∈ (ξix1 , ξ
ix
2 ). With x equal to the point (ξix0 , f

ix(ξix0 )), it follows

that |ξix1 −ξix0 | ≤ r0 and |ξix2 −ξix0 | ≤ r0. The number r0 can be taken to
be independent of the choice of Γ satisfying the Lipschitz Condition 3
subject to the triple (U,∆0,M) because Γ differs from Γ0 only within
the disk ∆0.

The integral in (2.15) can be split into two parts,

(2.16)

∫
Γ

∣∣log |x−y|
∣∣ dσy =

∫
γx

∣∣log |x−y|
∣∣ dσy +

∫
Γ\γx

∣∣log |x−y|
∣∣ dσy.

The first term is bounded by∫
γx

∣∣log |x−y|
∣∣ dσy

=

∫
(ξix1 ,ξix2 )

∣∣∣log
√

(ξix0 −ξix)2+(f ix(ξix0 )−f ix(ξix))2
∣∣∣ dσ(ξix)(2.17)

≤
∫

(ξix1 ,ξix2 )

∣∣log |ξix0 −ξix |
∣∣√M2+1 dξix(2.18)

≤
∫

(−r0,r0)

∣∣log |r|
∣∣√M2+1 dr = C ′,(2.19)

where C ′ is a finite constant. This constant depends only on r0 and M
and is therefore independent of the choice of Γ satisfying the Lipschitz
Condition 3 subject to the triple (U,∆0,M). The first inequality comes
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from r0 < 1, which makes the argument of the logarithm of (2.17) less
than 1. The second term of (2.16) is bounded by

(2.20)

∫
Γ\γx

∣∣ log |x−y|
∣∣dσy ≤ len(Γ) max

(∣∣ log |r1(Γ)|
∣∣, ∣∣ log |r2(Γ)|

∣∣) ,
where r1(Γ) := infx∈Γ dist(x,Γ \ γx) and r2(Γ) is the radius of Γ. For
Γ satisfying the Lipschitz Condition 3 subject to the triple (U,∆0,M),
len(Γ) is uniformly bounded from above and both r1(Γ) and r2(Γ)
are uniformly bounded from above and below by positive numbers.
Therefore, the right-hand side of (2.20) is bounded by a constant C ′′

that does not depend on this choice of Γ.

With the constant C = (C ′+C ′′)/(2π), the bound (2.15) is proved
for all curves Γ satisfying the Lipschitz Condition 3 subject to the triple
(U,∆0,M). By Young’s generalized inequality [7, Theorem 0.10], (2.15)
implies that

(2.21) ‖SΓψ‖L2(Γ) ≤ C ‖ψ‖L2(Γ)

for all such curves Γ. Thus the conclusion of Lemma 4 holds for
CS =

√
C. �

For the proof of Lemma 5, we will work within the spaces H
−1/2
0 (Γ)

to ensure that 〈 · , · 〉SΓ
remains positive definite. In H

−1/2
0 (Γ), the S

inner product is independent of the choice of β > 0 in the single-layer
potential operator (1.3). We set β = 1.

Lemma 5. Let a simple closed curve Γ0 of class C2,α (α > 0) in R2,
an eigenvalue λ 6∈

{
0, 1

2

}
of K∗Γ0

, and a number ε > 0 be given; and let a
triple (U,∆0,M) for Γ0 be given as in Condition 3.

(1) There exist numbers r > 0 and ρ > 0 such that, for each type T
perturbation Γ of Γ0 that satisfies the Lipschitz Condition 3 subject to
(U,∆0,M), and the condition

(2.22) 0< t2 < r, 0< 1− s2 < r,

and the condition

(2.23)

√
len(D)

dist(A′, D)
< ρ ,
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(where len(D) is the arclength of the curve D), there exists ψ∈H−1/2
0 (Γ)

satisfying

(2.24) 〈(K∗Γ−λ)ψ, (K∗Γ−λ)ψ〉SΓ
≤ ε2 〈ψ,ψ〉SΓ

.

Thus, either λ ∈ σ(K∗Γ) or

(2.25)
∥∥(K∗Γ−λ)−1

∥∥
SΓ
> ε−1

where K∗Γ is considered as an operator in H
−1/2
0 (Γ).

(2) If Γ0 has reflectional symmetry about a line L and ∆0 contains
an intersection point of L and Γ0 and λ is an eigenvalue of the even
component K∗Γ0,e

of K∗Γ0
(or the odd component K∗Γ0,o

), then (2.25) can
be replaced by

(2.26)
∥∥(K∗Γ,e−λ)−1

∥∥
SΓ
> ε−1

(
or
∥∥(K∗Γ,o−λ)−1

∥∥
SΓ
> ε−1

)
(considered as an operator in the even (odd) subspace of H

−1/2
0 (Γ))

for each type T perturbation Γ of Γ0 that has reflectional symmetry
about L, satisfies the Lipschitz Condition 3 subject to (U,∆0,M), and
satisfies (2.22) and (2.23).

Proof. Let λ /∈
{

0, 1
2

}
be an eigenvalue of K∗Γ0

:H−1/2(Γ0)→H−1/2(Γ0)
with eigenfunction φ,

(2.27) (K∗Γ0
−λ)φ= 0 .

We may assume that φ is real-valued since the kernel of K∗Γ0
is real. By

Lemma 1, φ ∈ L2(Γ0). By Theorem 3.6 of [5], K∗Γ0
maps L2(Γ0) into

H1(Γ0) because Γ0 is of class C2,α, thus φ is an absolutely continuous
function (in the almost-everywhere sense). Since φ is not in the one-
dimensional eigenspace for the eigenvalue 1/2 of K∗Γ0

, it must lie in the

SΓ0
-complement H

−1/2
0 (Γ0) of that eigenspace, that is, φ ∈H−1/2

0 (Γ0).

Recall that 〈 · , · 〉SΓ0
is positive definite in φ ∈ H

−1/2
0 (Γ0) and the

corresponding norm is denoted by ‖ · ‖SΓ0
.

Let (U,∆0,M) be a triple for Γ0 as in Condition 3, and let CS be
the constant provided by Lemma 4. Let Γ be a type T perturbation of
Γ0, with all notation from Definition 2 pertaining to it, that satisfies
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the Lipschitz Condition 3 subject to (U,∆0,M). By Lemma 4,
(2.28)

‖ψ‖2SΓ
= (ψ,ψ)SΓ := (SΓψ,ψ)L2(Γ) ≤ C2

S (ψ,ψ)L2(Γ) ∀ψ ∈ L2
0(Γ),

in which L2
0(Γ) denotes the space of all f ∈ L2(Γ) such that

∫
Γ
fds= 0.

This uniform bound will not be used until inequality (2.46).

Let x1 ∈ Γ0 be a point other than x0, such that |φ(x1)| >
3
4 maxy∈Γ0

|φ(y)|. Let J be a subarc of Γ0 containing x1. There exists a
number d > 0, such that when len(J)< d, φ does not change sign on J ,
|φ(x)|> 1

2 maxy∈Γ0
|φ(y)| for x∈ J and J ⊂A′ when len(Γ0\A′)<d. For

every choice of t2 and s2 such that len(Γ0\A′)<d, let len(J)=len(Γ0\A′).
Then one can choose constant a :−2< a < 2 in the function

(2.29) χ(x) =


1, x ∈A′\J,
a, x ∈ J,
0, otherwise,

such that χφ∈L2
0(Γ0)⊂H−1/2

0 (Γ0). Since χφ is supported in A′, which is

a subarc of both Γ and Γ0, χφ can also be considered to lie in H
−1/2
0 (Γ).

Let C0 be a bound for SΓ0
in L2(Γ0),

(2.30) ‖SΓ0ψ‖L2(Γ0) ≤ C0 ‖ψ‖L2(Γ0) ∀ψ ∈ L2(Γ0).

Thus

(2.31)
∣∣(χφ, χφ)SΓ − (φ, φ)SΓ0

∣∣
=
∣∣(χφ, χφ)SΓ0

− (χφ−φ, χφ)SΓ0
+ (φ, χφ−φ)SΓ0

∣∣
≤ C0

(
‖χφ‖L2(Γ0) + ‖φ‖L2(Γ0)

)
‖χφ−φ‖L2(Γ0)

≤ 3C0‖φ‖L2(Γ0)‖(1−χ)φ‖L2(Γ0).

As t2 and 1−s2 tend to zero simultaneously, the measure of the support of
1−χ on Γ0 tends to zero, and therefore ‖(1−χ)φ‖L2(Γ0) converges to zero.

Thus, (χφ, χφ)SΓ
converges to (φ, φ)SΓ0

; equivalently, ‖χφ‖SΓ
converges

to ‖φ‖SΓ0
as t2 and 1− s2 tend to zero. The number Cφ := ‖φ‖SΓ0

/2 is

positive because SΓ0
is a positive operator and φ is nonzero in L2

0(Γ0).
Therefore,

(2.32) ‖χφ‖SΓ
> Cφ

whenever t2 and 1− s2 are sufficiently small.
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We next seek to bound the L2 norm ‖(K∗Γ−λ)(χφ)‖L2(Γ) (see (2.43)
below). The domains A and D can be treated separately since
(2.33)
‖(K∗Γ−λ)(χφ)‖L2(Γ) ≤ ‖(K∗Γ−λ)(χφ)‖L2(A) + ‖(K∗Γ−λ)(χφ)‖L2(D) .

For the set A, one uses the eigenvalue condition (K∗Γ0
− λ)φ = 0 and

K∗Γ(χφ)|A =K∗Γ0
(χφ)|A to obtain

(2.34) [(K∗Γ−λ)(χφ)]
∣∣
A

= [(K∗Γ−λ)(χφ)− (K∗Γ0
−λ)φ]

∣∣
A

= [(K∗Γ0
−λ)(χφ)− (K∗Γ0

−λ)φ]
∣∣
A

= [K∗Γ0
((χ− 1)φ) +λ(1−χ)φ]

∣∣
A
.

Denote the kernel of the adjoint Neumann-Poincaré operator by

(2.35) K∗Σ(x, y) =
1

2π

x− y
|x− y|2 ·nx (Σ = Γ0 or Γ).

The first term in the last expression of (2.34) is bounded pointwise due
to the pointwise bound 2πK∗Γ0

(x, y) < CΓ0 , which holds since Γ0 is of

class C2 [4, Theorem 2.2]:

(2.36) 2π|K∗Γ0
((χ− 1)φ)(x)|

=

∣∣∣∣∫
Γ0

K∗Γ0
(x, y)(χ(y)− 1)φ(y) dσ(y)

∣∣∣∣
≤ 3CΓ0

∫
Γ0\A′∪J

|φ(y)| dσ(y)

≤ 3CΓ0
‖φ‖L2(Γ0)

√
len(Γ0\A′) + len(J)

= 3
√

2CΓ0‖φ‖L2(Γ0)

√
len(Γ0\A′) , ∀x ∈A,

since len(J) = len(Γ0\A′), and the second term is bounded in norm by

(2.37) ‖λ(1−χ)φ‖L2(A) ≤ 3 |λ|
(∫

Γ0\A′∪J
|φ|2

)1/2

≤ 3 |λ|C(2 len(Γ0\A′)),

in which C(µ)> 0 is a number that decreases to zero as µ→ 0. Together,
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these two bounds yield

(2.38) ‖(K∗Γ−λ)(χφ)‖L2(A)

≤ ‖K∗Γ0
((χ− 1)φ) ‖L2(A) + ‖λ(1−χ)φ‖L2(A)

≤ 3CΓ0√
2π
‖φ‖L2(Γ0)

√
len(A)

√
len(Γ0\A′) + 3 |λ|C(2len(Γ0\A′))

≤ C ′(len(Γ0\A′)),

in which C ′(µ)> 0 is a number that decreases to zero as µ→ 0.

On the set D, χφ vanishes, so that

(2.39) (K∗Γ−λ)(χφ)|D =K∗Γ(χφ)|D.
Since Γ has a corner, the kernel of K∗Γ does not enjoy a uniform pointwise
bound, but (2.35) does provide

(2.40) |K∗Γ(x, y)| ≤ 1

2π

1

|x− y| ∀x, y ∈ Γ.

Using this and the inclusion supp(χ) ⊂ A′, one obtains a pointwise
bound for x ∈D,

(2.41)
∣∣K∗Γ(χφ)(x)

∣∣=

∣∣∣∣∫
Γ

K∗Γ(x, y)χ(y)φ(y)dσ(y)

∣∣∣∣
= 2

∣∣∣∣∫
A′
K∗Γ0

(x, y)φ(y)dσ(y)

∣∣∣∣
≤ 1

π dist(A′, D)

∫
A′
|φ(y)|dσ(y)

≤ 1

π dist(A′, D)
‖φ‖L2(Γ0)

√
len(Γ0) ∀x ∈D.

This bound together with (2.39) yields

(2.42) ‖(K∗Γ−λ)(χφ)‖L2(D) ≤
1

π dist(A′,D)
‖φ‖L2(Γ0)

√
len(Γ0) len(D) .

Combining (2.38) and (2.42) produces the bound

(2.43) ‖(K∗Γ−λ)(χφ)‖L2(Γ)

≤ C ′(len(Γ0\A′)) +
‖φ‖L2(Γ0)

√
len(Γ0)

π

√
len(D)

dist(A′, D)
.
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Both of these bounding terms can be made arbitrarily small simul-
taneously. Consider the first term: Γ0\A′ is the part of Γ0 about x0

between Γ0(t2) and Γ0(s2). Therefore, by taking t2 and 1−s2 sufficiently
small, len(Γ0\A′) can be made arbitrarily small, and one obtains

(2.44) C ′(len(Γ0\A′))→ 0 as max {t2, 1−s2}→ 0 .

Let ε > 0 be given arbitrarily. The convergence (2.44) implies that
there exists r > 0 such that, if 0 < t2 < r and 0 < 1− s2 < r, then
C ′(len(Γ0\A′))<εCφ/(2CS). Assume that r is small enough so that also

(2.32) holds. Then with ρ= επCφ/(2CS‖φ‖L2(Γ0)

√
len(Γ0) ), the second

term of (2.43) is less than εCφ/(2CS) whenever
√

len(D)/dist(A′, D)<ρ.
These two bounds together yield

(2.45) ‖(K∗Γ−λ)(χφ)‖L2(Γ) ≤
Cφ
CS

ε .

Combining this bound with (2.28) and (2.32) provides the desired
bound

(2.46) ‖(K∗Γ−λ)(χφ)‖SΓ
≤ CS‖(K∗Γ−λ)(χφ)‖L2(Γ) ≤ εCφ ≤ ε ‖χφ‖SΓ

.

If λ /∈ σ(K∗Γ) is a regular point of the operator K∗Γ, this implies that

(2.47) ‖(K∗Γ−λ)−1‖SΓ
> ε−1,

in which K∗Γ is considered as an operator in H
−1/2
0 (Γ), as claimed in

the first part of the theorem.

These arguments also prove the second part of the theorem for a
curve Γ0 that is symmetric about a line L if (1) the reference point x0

is taken to be on L, (2) J consists of two segments that are symmetric
about L, (3) one takes χ to be even (Γ0(s2) is the reflection of Γ0(t0)
about L) so that if φ is even (or odd) χφ will also be even (or odd), and
(4) the replacement curve D is taken to be symmetric about L. Then in
every occurrence of K∗Γ0

or K∗Γ in the arguments, the operator is acting
on an even (or odd) distribution, and thus may be replaced by K∗Γ0,e

or

K∗Γ,e (or K∗Γ0,o
or K∗Γ,o). �

It is geometrically straightforward, even if somewhat technical
analytically, to demonstrate that Lipschitz perturbations of type T
as required in Lemma 5 are plentiful. The following lemma will suffice.
Essentially, it says that one can always construct a perturbation Γ with
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a desired corner angle θ for which the lower bound on the resolvent
of K∗Γ in Lemma 5 holds. To do this, one must find an appropriate
Lipschitz constant M for the given θ (sharper angles require larger M)
and then construct a type T perturbation that satisfies the requirements
of Lemma 5.

Lemma 6. Let a simple closed curve Γ0 of class C2, and a number θ
such that 0< θ < π be given. There exists a triple (U,∆0,M) for Γ0 as
in Condition 3 such that, for all positive numbers r and ρ, there exists a
perturbation Γ of Γ0 of type T such that: Γ satisfies the Lipschitz
Condition 3 subject to (U,∆0,M); conditions (2.22) and (2.23) of
Lemma 5 are satisfied; and the half exterior angle of the corner of
Γ is equal to θ. If Γ0 is symmetric about a line L, then Γ can be taken
to be symmetric about L with the tip of the corner lying on L.

Proof. Given θ ∈ (0, π), let g(ξ), for ξ in some interval, be a function
whose graph describes a rotated corner of a type T perturbation as
described in part (d) of Definition 2 (a neighborhood of a corner of the
intersection of two circles as in Figure 2) such that the tip occurs at
ξ = 0 and points upward for θ > π/2 and downward for θ < π/2; and let
M1 and M2 be positive numbers such that M1 < |g′(ξ)|<M2 for ξ 6= 0.

Let a simple closed curve Γ0 of class C2 be parameterized such that
Γ0(0)=Γ0(1)=x0. Choose an open set U⊂R2 and rotated and translated
coordinates (ξ, η) for R2 such that x0∈U and Γ0∩U is the graph η=f(ξ)
of a C2 function f , with x0 = (0, f(0)) and |f ′(ξ)| < min{1,M1}, and
such that the part of U that lies below the graph is in the interior
domain of Γ0. Choose a closed disk ∆0 ⊂ U centered at x0. Each closed
circle centered at x0 contained in ∆0 intersects Γ0 at exactly two points.
There are no more than two intersection points because |f ′(ξ)|< 1.

Let ∆ be any closed disk centered at x0 and contained in ∆0. Define
g̃(ξ) = g(ξ) + η0 with η0 chosen such that the graph η = g̃(ξ) intersects
Γ0 in exactly two points in the interior of ∆—call them x1 = (ξ1, f(ξ1))
and x2 = (ξ2, f(ξ2))—and such that the graph of g̃ between these two
points lies in the interior of ∆. This is possible because |g̃′(ξ)| >M1

and |f ′(ξ)|<M1.

Set f̃(ξ) = f(ξ) for ξ 6∈ [ξ1, ξ2] and f̃(ξ) = g̃(ξ) for ξ ∈ [ξ1, ξ2], and

observe that the tip of the corner occurs at the point (0, f̃(0)). Then
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let
˜̃
f(ξ) be a function that is of class C2 except at ξ = 0 and that is

equal to f̃(ξ) except in two nonintersecting intervals, one about ξ1 and
one about ξ2; these intervals can be taken small enough so that the

graphs of
˜̃
f and f coincide outside of ∆. The smoothing

˜̃
f can also be

arranged so that
∣∣ ˜̃
f ′(ξ)

∣∣<M2; this is because |f̃ ′(ξ)|<M2 except at ξ1,

0, and ξ2, where f̃ is continuous but not differentiable. It follows that

the length of the graph of
˜̃
f inside ∆, which is called D in part (d) of

Definition 2, is bounded by

(2.48) len(D)≤ 2
√

1 +M2
2 rad(∆).

The curve Γ resulting from replacing the segment of Γ0 described by

η = f(ξ) by the curve η =
˜̃
f(ξ) is a type T perturbation of Γ0 that

satisfies the Lipschitz Condition 3 subject to the triple (U,∆0,M2), and
its corner has half exterior angle equal to θ.

Let r>0 and ρ>0 be given. Choose numbers t2 and s2 in Definition 2
so that condition (2.22) is satisfied, that is, 0< t2 < r and 0< 1−s2 < r.
For these fixed values of t2 and s2,

(2.49)

√
len(D)

dist(A′, D)
≤

√
2
√

1 +M2
2 rad(∆)

dist(A′,∆)
→ 0 as rad(∆)→ 0.

Therefore, rad(∆) can be taken to be small enough in this construction
of Γ so that

(2.50)

√
len(D)

dist(A′, D)
< ρ,

which is condition (2.23). In the symmetric case, x0 ∈ L and t2 and s2

can be chosen such that Γ0(s2) is the reflection of Γ0(t0) about L, and
D can be arranged to be symmetric about L. �

3. Reflection symmetry and essential spectrum. For all of the
curves in this section, assume that β in (1.3) is chosen such that S is
a positive operator for all the curves under consideration. Consider a
curve Γ0 of class C2 and perturbations Γ of type T that are symmetric
with respect to a line L. Recall that, in this case, the operators K∗Γ0

and
K∗Γ admit decompositions onto the even and odd distributional spaces,
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as stated in (2.11),

(3.51) K∗Γ0
=K∗Γ0,e⊕K∗Γ0,o , K∗Γ =K∗Γ,e⊕K∗Γ,o .

The prototypical curvilinear polygons ∂Ω described in Section 2 (Fig-
ure 2) are themselves symmetric about a line through the two corner
points. The spectral resolution of the Neumann-Poincaré operator
on ∂Ω is explicitly computed in [10] through conformal mapping and
Fourier transformation. Recall that θ is half the angle of the corner
measured in the exterior of the curve. It is shown that

(3.52) σac(K∗∂Ω) = [−b, b], σsc(K∗∂Ω) = ∅, σpp(K∗∂Ω) =
{

1
2

}
,

where b= | 12− θ
π | depends on the angle, σac refers to absolutely continuous

spectrum, σsc refers to singular continuous spectrum, and σpp refers to
pure point spectrum. Therefore, σac(K∗∂Ω) = σess(K∗∂Ω).

Furthermore, it is shown in [10] that the essential spectra of the even
and odd components of K∗∂Ω intersect only in {0},

(3.53) σess(K∗∂Ω,o) = [−b, 0], σess(K∗∂Ω,e) = [0, b] for π/2< θ < π

for outward-pointing corners and

(3.54) σess(K∗∂Ω,o) = [0, b], σess(K∗∂Ω,e) = [−b, 0] for 0< θ < π/2

for inward-pointing corners. Our proof of eigenvalues in the essential
spectrum requires that this disjointness persist for the perturbation Γ,
and this is the content of the following proposition.

The proof of Proposition 7 invokes the local nature of the essential
spectrum of K∗Γ. This is bridged by its essential spectrum σea(K∗Γ) in
the approximate eigenvalue sense [16]. For an operator T : H → H,
λ∈σea(T ) if and only if there is a bounded sequence {fn}∞n=1∈H having
no convergent subsequence, such that (T − λ)fn→ 0 in H. One calls
{fn}∞n=1 a singular sequence. When T is self adjoint, σess(T ) = σea(T ).
If an operator S : H → H is such that S − T is compact, then
σea(S) = σea(T ).

Proposition 7. The essential spectra of the even and odd components
of K∗Γ for a reflectionally symmetric perturbation curve Γ of type T
coincides with the essential spectra of the even and odd components
of K∗∂Ω for the prototypical curvilinear polygon ∂Ω (Figure 2) having
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corners with the same exterior angle as Γ,

σess(K∗Γ,e) = σess(K∗∂Ω,e),(3.55)

σess(K∗Γ,o) = σess(K∗∂Ω,o).(3.56)

Proof. This proof essentially follows [16]. Let Σ be a simple closed
Lipschitz curve that is piecewise of class C2 and has n corners. Let
{ρj}nj=1 be cutoff functions on Σ that have mutually disjoint supports
and such that ρj is equal to 1 in a neighborhood of the j-th corner and
is of class C2 otherwise, and set ρ0 = 1−∑n

j=1 ρj . Denote by Mρ the
operator of multiplication by ρ. In the decomposition

(3.57) KΣ =
∑

0≤i,j≤n
MρiKΣMρj ,

each term is compact unless i= j 6= 0. This implies the second equality
in

(3.58) σess(KΣ) = σea(KΣ) = σea

( n∑
j=1

MρjKΣMρj

)
=

n⋃
j=1

σea

(
MρjKΣMρj

)
,

where the first equality follows from the self-adjointness of KΣ :
H1/2(Σ)→ H1/2(Σ) with respect to the S−1

Γ inner product, and the
last equality is proved in [16, Lemma 9].

Now suppose that Σ is reflectionally symmetric about a line L and
that Σ has either one or two corners (so that n= 1 or n= 2) with vertex
on L and that the cutoff functions ρj are chosen to be even so that the
operators Mρj commute with the reflection. Because of this, one has
orthogonal decompositions

(3.59) MρiKΣMρj = MρiKΣ,eMρj ⊕ MρiKΣ,oMρj ,

and therefore the compactness of MρiKΣMρj (unless i= j 6= 0) implies
the compactness of the even and odd components on the right-hand
side. Using this with the decomposition

(3.60) KΣ,e =
∑

0≤i,j≤n
MρiKΣ,eMρj
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and the analogous decomposition of KΣ,o yields

σess(KΣ,e) =
n⋃
j=1

σea

(
MρjKΣ,eMρj

)
,(3.61)

σess(KΣ,o) =
n⋃
j=1

σea

(
MρjKΣ,oMρj

)
.(3.62)

Apply this result to ∂Ω, which has two corners (n= 2), and to the
type T perturbation Γ of Γ0, which has only one corner (n = 1), and
use ρ̃1 for Γ to distinguish it from ρ1 for ∂Ω,

(3.63)
σess(K∂Ω,e) = σea (Mρ1K∂Ω,eMρ1)∪σea (Mρ2K∂Ω,eMρ2) ,

σess(KΓ,e) = σea (Mρ̃1
KΓ,eMρ̃1

) .

Since a neighborhood of the corner of Γ coincides after translation and
rotation with a neighborhood of either corner of ∂Ω, and since ∂Ω has
symmetry about a vertical line (Figure 2), the function ρ1 + ρ2 can be
chosen to be symmetric with respect to both reflections. Furthermore,
ρ̃1 and ρ1 can be chosen so that supp ρ̃1∩Γ and supp ρ1∩∂Ω as well as
the functions ρ̃1 and ρ1 on their supports coincide after translation and
rotation. Under these conditions, Mρ1

K∂Ω,eMρ1
, and Mρ2

K∂Ω,eMρ2
are

unitarily similar operators; thus

(3.64) σea (Mρ1
K∂Ω,eMρ1

) = σea (Mρ2
K∂Ω,eMρ2

) = σess(K∂Ω,e).

Since σea

(
MρjKΣ,eMρj

)
is characterized by functions localized at the

j-th corner, we obtain

(3.65) σea (Mρ̃1
KΓ,eMρ̃1

) = σea (Mρ1
K∂Ω,eMρ1

) .

Therefore

σess(KΓ,e) = σess(K∂Ω,e),(3.66)

σess(KΓ,o) = σess(K∂Ω,o),(3.67)

and the equation for the odd component is obtained in the same manner.

The proposition now follows from σess(K∗Γ,e) = σess(KΓ,e) and

σess(K∗∂Ω,e)=σess(K∂Ω,e) and the analogous equalities for the odd compo-

nents of these operators, where K∗Γ and K∗∂Ω are considered on H−1/2(Γ)

and H−1/2(∂Ω). �
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Equation (3.58) expresses the local manner in which the corners
of a curvilinear polygon contribute to the essential spectrum of the
Neumann-Poincaré operator. How this happens for an individual corner
is enlightened through explicit construction of Weyl sequences associated
to each λ ∈ σess(K∗Γ), which is carried out by Bonnetier and Zhang [1].

4. Eigenvalues in the essential spectrum. The strategy to con-
struct eigenvalues in the essential spectrum for the Neumann-Poincaré
operator is to obtain a spectral-vicinity result of the form

(4.68) dist(λ, σ(K∗Γ,e))< ε ,

in which λ is an eigenvalue of K∗Γ0,e
and Γ is a type T perturbation of

Γ0, by applying Lemma 5. The angle of the corner of Γ is chosen so that
λ does not lie within the essential spectrum of K∗Γ,e but does lie inside
the essential spectrum of K∗Γ,o. This will guarantee that K∗Γ,e has an
eigenvalue near λ and that this eigenvalue lies in the essential spectrum
of K∗Γ,o. An analogous procedure applies to eigenvalues of K∗Γ0,o

. In fact,
Γ can be chosen so that several eigenvalues of K∗Γ0

are perturbed into
eigenvalues of K∗Γ that lie within the essential spectrum. Our proof is
only able to guarantee a finite number of eigenvalues in the essential
spectrum for a given perturbation Γ. This is because the perturbation
Γ depends on the eigenfunction and on ε (smaller ε requires a corner
of smaller arclength), and no uniform ε can be chosen to guarantee
infinitely many distinct perturbed eigenvalues of the same sign.

Theorem 8. Let Γ0 be a simple closed curve of class C2,α in R2 that
is symmetric about a line L.

(a) Suppose that the adjoint Neumann-Poincaré operator K∗Γ0
has m even

eigenfunctions corresponding to eigenvalues λej and n odd eigenfunctions
corresponding to eigenvalues λoj such that

(4.69) λem < · · ·< λe1 < 0< λo1 < · · ·< λon .

There exists a Lipschitz-continuous perturbation Γ of Γ0 with the
following properties: Γ is symmetric about L; Γ possesses an outward-
pointing corner and is otherwise of class C2,α; the associated operator
K∗Γ has m even eigenfunctions corresponding to eigenvalues λ̃ej and n

odd eigenfunctions corresponding to eigenvalues λ̃oj such that
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(4.70) λ̃em < · · ·< λ̃e1 < 0< λ̃o1 < · · ·< λ̃on ;

these eigenvalues lie within the essential spectrum of K∗Γ.

(b) Suppose that the adjoint Neumann-Poincaré operator K∗Γ0
has m odd

eigenfunctions corresponding to eigenvalues λoj and n even eigenfunctions
corresponding to eigenvalues λej < 1/2 such that

(4.71) λom < · · ·< λo1 < 0< λe1 < · · ·< λen .

There exists a Lipschitz-continuous perturbation Γ of Γ0 with the
following properties: Γ is symmetric about L; Γ possesses an inward-
pointing corner and is otherwise of class C2,α; the associated operator
K∗Γ has m odd eigenfunctions corresponding to eigenvalues λ̃oj and n

even eigenfunctions corresponding to eigenvalues λ̃ej such that

(4.72) λ̃om < · · ·< λ̃o1 < 0< λ̃e1 < · · ·< λ̃en ;

these eigenvalues lie within the essential spectrum of K∗Γ.

Proof. For part (a), observe that −λem and λon are less than 1/2
because σ(K∗Γ) is contained in the interval (−1/2, 1/2) except for the
eigenvalue 1/2. The eigenfunction for 1/2 is even because it corresponds
to the single-layer potential that is constant on Γ. Choose a real number
b such that −b < λem < λon < b < 1/2, and let θ be the number such that
b= θ/π− 1/2, so that π/2< θ < π. Let ε > 0 be given such that

(4.73) ε <min
{

1
2 |λei−λei+1|, 1

2 |λoj−λoj+1|, |λe1|, |λo1|, b−λon, b+λem
}
,

i= 1,. ..,m−1, j = 1,. ..,n−1.

Let (U,∆0,M) be a triple for Γ0 guaranteed by Lemma 6 for the
given value of θ. For this triple (U,∆0,M) and ε, let r(λ) and ρ(λ) be
the numbers stipulated in Lemma 5 for λ ∈ {λe1, . . . , λem, λo1, . . . , λon},
and let r be the minimum of r(λ) and ρ be the minimum of ρ(λ) over
all these eigenvalues. Lemma 6 provides a perturbation Γ of type T
such that (i) Γ satisfies the Lipschitz Condition 3 subject to the triple
(U,∆0,M), (ii) its corner has exterior angle 2θ, (iii) the conditions (2.22)
and (2.23) of Lemma 5 are satisfied, (iv) Γ is symmetric about L. For
this Lipschitz curve Γ, Lemma 5 guarantees that

(4.74) ‖(K∗Γ−λ)−1‖SΓ > ε−1 ∀λ ∈ {λe1, . . . , λem, λo1, . . . , λon},
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in which K∗Γ is considered as an operator in H
−1/2
0 (Γ). As K∗Γ is self-

adjoint in H
−1/2
0 (Γ) with respect to the SΓ inner product, one obtains

(4.75) dist(λ, σ(K∗Γ))< ε ∀λ ∈ {λe1, . . . , λem, λo1, . . . , λon}.

Because of part (2) of Lemma 5, this inequality holds for the spectrum
of the even and odd components of K∗Γ,

dist(λej , σ(K∗Γ,e))< ε for j = 1, . . . ,m,(4.76)

dist(λoj , σ(K∗Γ,o))< ε for j = 1, . . . , n.(4.77)

By Proposition 7 and the discussion preceding it, the essential spectra
of these operators are

σess(K∗Γ,e) = [0, b],(4.78)

σess(K∗Γ,o) = [−b, 0],(4.79)

with b = θ
π − 1

2 . Because of (4.76,4.78), the choice of ε, and the self-

adjointness of K∗Γ,e, there exist eigenvalues λ̃ej for j = 1, . . . ,m that

satisfy (4.70). Similarly, because of (4.77,4.79), there exist eigenvalues

λ̃oj for j = 1, . . . , n that satisfy (4.70). Because of the choices of b and ε,
one has

λ̃ej ∈ σess(K∗Γ,o),(4.80)

λ̃oj ∈ σess(K∗Γ,e).(4.81)

Since π/2< θ < π, the corner is outward-pointing.

Part (b) is proven analogously. In this case, b=−θ/π+ 1/2, so that
0< θ < π/2, and the corner is therefore inward-pointing. �

For any reflectionally symmetric curve of class C2,α except for a
circle, Theorem 8 allows one to create lots of eigenvalues in the essential
spectrum by appropriate Lipschitz perturbations.

Corollary 9. Let Γ0 be a simple closed curve of class C2,α in R2 that
is symmetric about a line L but that is not a circle. For any positive
integer n, there exists a perturbation Γ of type T , also symmetric about
L, such that K∗Γ admits n negative and n positive eigenvalues that lie
within the essential spectrum of K∗Γ.
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Proof. We begin with two facts. (1) Except for when Γ0 is a circle,
the operator K∗Γ0

is always of infinite rank [18, §7.3–7.4]. (2) For
each nonzero eigenvalue λ of K∗Γ0

corresponding to an even (odd)
eigenfunction, −λ is an eigenvalue of K∗Γ0

corresponding to an odd (even)
eigenfunction. The symmetry of the point spectrum is proved in [8,
Theorem 2.1]; and the statement about the parities of the eigenfunctions
can be obtained from augmenting the proof of that theorem, using the
assumption that the eigenfunction corresponding to λ is even (odd).

Assume that Γ0 is not a circle. Facts (1) and (2) together imply
that both K∗Γ0,o

and K∗Γ0,e
are of infinite rank. This means that K∗Γ0,o

has infinitely many negative eigenvalues or infinitely many positive
eigenvalues. Suppose the former case holds. Then by (2), K∗Γ0,e

has
infinitely many positive eigenvalues. Thus, for any integer n, the
hypotheses of part (b) of Theorem 8 are satisfied. In the other case,
the hypotheses of part (a) are satisfied. In either case, the conclusion
of the corollary follows from the theorem. �

Example: A perturbed ellipse. Consider the Neumann-Poincaré
operator for an ellipse, whose eigenvalues and eigenfunctions are known
explicitly [3, §3]. They take simple forms in the elliptic coordinates
(%, ω), which are related to the the Cartesian coordinates x= (x1, x2) by

(4.82) x1 =R cosω cosh %, x2 =R sinω sinh %, % > 0, 0≤ ω ≤ 2π.

The set E = {(%, ω) : % = %0} is an ellipse with foci (±R, 0). The
non-one-half eigenvalues of the operator K∗E are αn and −αn and the
corresponding eigenfunctions are

(4.83) φ+
n := Ξ(%0, ω)−1 cosnω, φ−n := Ξ(%0, ω)−1 sinnω (n≥ 1),

in which

(4.84) αn =
1

2e2n%0
, Ξ(%0, ω) =R

√
sinh2 %0 + sin2 ω (n≥ 1).

We make two observations. First, φ±n are in L2(E), as guaranteed by
Lemma 1. Second, φ+

n are even about the major axis of the ellipse, φ−n
are odd about the major axis, φ+

2k+1 and φ−2k are odd about the minor

axis, and φ+
2k and φ−2k+1 are even about the minor axis. That is to say,

all eigenfunctions corresponding to positive (negative) eigenvalues are
even (odd) with respect to the major axis, and they alternate between
odd and even with respect to the minor axis.
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Let L be the major axis of an ellipse Γ0 =E. The hypotheses of part
(b) of Theorem 8 are satisfied for any integers m and n, and therefore
one can perturb Γ0 to a domain Γ by attaching an inward-pointing
corner with its tip on L (according to Definition 2) that is small enough
so that K∗Γ has eigenvalues within the essential spectrum as described
in the conclusion of part (b). Now let L be the minor axis of an ellipse
Γ0 = E. Either of the hypotheses of parts (a) and (b) of the theorem
can be satisfied for any m and n, and thereby eigenvalues within the
essential spectrum can be created for K∗Γ according to the theorem.

5. Discussion. We conclude with some questions and observations.

1. Can K∗Γ have infinitely many embedded eigenvalues, and might
this actually occur typically? Our proof guarantees only a finite number
of eigenvalues within the essential spectrum for a given Lipschitz type T
perturbation Γ of Γ0 because it establishes merely that the perturbation
of an eigenvalue tends to zero as the size of the attached corner tends to
zero. One requires tighter control over the variation of the eigenvalues
in order to guarantee that an infinite sequence of eigenvalues tending
to zero is retained, with the same sign, when passing from Γ0 to Γ.

A desirable result would be to prove that, for a symmetric curve Γ
with an outward-pointing corner, the positive part of K∗Γ,o is compact
and has infinite rank. This may not be unreasonable, seeing that K∗Γ,o
has non-positive essential spectrum. Such a result would guarantee an
infinite sequence of positive eigenvalues of K∗Γ,o which would overlap
with the essential spectrum of K∗Γ,e.

2. What happens when the essential spectrum of K∗Γ,e overlaps
eigenvalues of K∗Γ0,e

? We expect that such eigenvalues of K∗Γ0,e
would not

be perturbed to eigenvalues of K∗Γ,e but rather would do the generic thing
and become resonances, which are poles of the analytic continuation
of the resolvent of K∗Γ,e onto another Riemann sheet. This type of

resonance is demonstrated numerically in [8, Figure 6], where one
observes resonances around the spectral values ±0.08; this example is
discussed in more detail in point 5 below.

3. Can one construct embedded eigenvalues of the Neumann-Poincaré
operator in the absence of reflectional symmetry?

4. The technique of perturbing a reflectionally symmetric C2,α curve
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by attaching corners to create embedded eigenvalues is not extensible
to a curve that admits a different group of symmetries, at least not
in a straightforward manner. Consider a curve Γ with a finite cyclic
rotational symmetry group Cr of order r. The Neumann-Poincaré
operator is decomposed on the r orthogonal eigenspaces of the action
of Cr on H−1/2(Γ), that is, the Hilbert-space decomposition

(5.85) H−1/2(Γ) =H−1/2,0(Γ)⊕ · · ·⊕H−1/2,r−1(Γ)

into eigenspaces of Cr induces a decomposition

(5.86) K∗Γ =K∗Γ,0⊕ · · ·⊕K∗Γ,r−1 .

If Γ has exactly r small corners that are cyclically permuted under
Cr, the essential spectrum of each of these component operators
is a symmetric interval [−b, b]. This is in contrast to the case of
reflectional symmetry, as was seen earlier, where σess(K∗Γ,o) = [−b, 0] and

σess(K∗Γ,e) = [0, b] (for an outward-pointing corner); and in contrast to

the rotationally invariant surface with a conical point in R3 investigated
by Helsing and Perfekt [9, Theorem 3.8, Figure 5], in which different
Fourier components of the Neumann-Poincaré operator have different
essential spectrum.

5. What if a corner is attached to a smooth curve without smoothing
out the points of attachment? The additional corners at the attachment
points will contribute to the essential spectrum of the Neumann-Poincaré
operator of the perturbed domain. A nice example of this is provided
by a numerical computation of Helsing, Kang and Lim in [8, Figure 6].
There, the C2,α curve is an ellipse Γ0, to which an outward corner is
attached symmetrically with respect to the minor axis L of symmetry
of the ellipse to create a perturbed Lipschitz curve Γ, illustrated in
Figure 3. Two additional inward corners not lying on L are created by
this attachment, and these two corners are positioned symmetrically
about L. The computation in [8] demonstrates exactly one positive
embedded eigenvalue with odd eigenfunction and exactly one negative
embedded eigenvalue with even eigenfunction. In fact, this is expected
based on the eigenvalues of K∗Γ0

and the essential spectrum of K∗Γ.

Specifically, we will show that (i) the essential spectrum of the even
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and odd components of K∗Γ, created by the three corners, are

(5.87)
σess(K∗Γ,o) = [− 1

4 ,
1
8 − η],

σess(K∗Γ,e) = [− 1
8 + η, 1

4 ],

in which η is a tiny number with 0 < η < 1/8, (ii) the largest four
eigenvalues (see 4.84) of K∗Γ0

are equal to ±α1 =±1/5 and ±α2 =±2/25,
and (iii) the eigenfunction for eigenvalue 1/5 is odd, and that for −1/5
is even. Theorem 8 and the supporting lemmas can be modified to
handle this example, in which the perturbed part of the curve has more
than one corner. By making the corner attachment small enough so
that K∗Γ,o has a (nonembedded) eigenvalue sufficiently near 1/5 and

K∗Γ,e has a (nonembedded) eigenvalue sufficiently near −1/5, these
eigenvalues of K∗Γ are contained within the essential spectrum of K∗Γ in
view of (5.87). And the corner attachment can be made small enough
such that α2 =2/25<1/8−η, so that the next eigenvalues in the sequence
lie within the essential spectra of both σess(K∗Γ,o) and σess(K∗Γ,e) and
thus are not expected to be perturbed to eigenvalues of K∗Γ.

Items (ii) and (iii) are results of the discussion on ellipses at the
end of Section 4, using %0 = tanh−1(3/7). Item (i) can be proved as
follows. Modify the proof of Proposition 7 by letting the cutoff function
ρ1 be localized about the one outward corner lying on L and letting
ρ2 = ρ+

2 +ρ−2 be a sum of two cutoff functions, one localized about each
of the two inward corners not lying on L. As before, one has

(5.88) KΓ,e =
∑

0≤i,j≤n
MρiKΓ,eMρj ,

with ρ0 + ρ1 + ρ2 = 1, and the essential spectrum is

(5.89) σess(KΓ,e) = σea (Mρ1
KΓ,eMρ1

)∪σea (Mρ2
KΓ,eMρ2

) .

The half exterior angle of the outward corner is θ1 = 3π/4, and thus
σea (Mρ1KΓ,eMρ1) is equal to the positive interval [0, 1/4] since this
operator acts on functions that are even with respect to L. The operator
Mρ2
KΓ,eMρ2

also acts on functions that are even with respect to L, but
since the inward corners do not lie on L, the symmetry of a function
about L does not restrict the function near either of the inward corners.
Thus the contribution to the essential spectrum coming from the inward
corners is the full interval [−b, b], with b = 1/8− η > 0 since the half
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Figure 3. This is the Lipschitz perturbation Γ of an ellipse treated
numerically in [8, Figure 6]. An outward-pointing corner replaces a
small section of the ellipse centered around its minor axis L. The points
at which the corner attaches to the ellipse introduce two inward-pointing
corners. The lines L− and L+ bisect these two corners.

exterior angle is a little bigger than 3π/8; that is to say,

(5.90) σea(Mρ2
KΓ,eMρ2

) = σea(Mρ+
2
KΓMρ+

2
) = [− 1

8 + η, 1
8 − η].

Likewise, σea (Mρ2
KΓ,oMρ2

) = [− 1
8 + η, 1

8 − η].

To make rigorous the assumption above that the eigenvalues ±α1 of
K∗Γ0

are perturbed into eigenvalues of K∗Γ, notice that Lemma 5 does
not rely on the smoothness of the attachment of the replacement curve
D to Γ0, so the resolvent bound established by that Lemma holds for
this example. In view of the essential spectra (5.87) of the even and odd
components, one can establish the existence of the perturbed eigenvalues
in a manner following the proof of Theorem 8.
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